[go: up one dir, main page]

login
A365310
a(n) = 2^(2^n) + 2^(2^(n+1)-1).
0
4, 12, 144, 33024, 2147549184, 9223372041149743104, 170141183460469231750134047789593657344, 57896044618658097711785492504343953926975274699741220483192166611388333031424
OFFSET
0,1
COMMENTS
a(n) is the long leg of the Pythagorean triangle whose short leg is the n-th Fermat number, A000215(n), and whose hypotenuse is a(n) + 1.
[A000215(n), a(n), a(n) + 1] is a primitive Pythagorean triple of the form [2*k + 1, 2*k^2 + 2*k, 2*k^2 + 2*k + 1] where k = A058891(n).
FORMULA
a(n) = A000215(n) + A058891(n+1) - 1.
a(n) = sqrt(Integral_{x=1..A000215(n)} (x^3-x) dx).
a(n) = 2*A058891(n)^2 + 2*A058891(n).
sqrt(a(n) + (a(n)+1)) = sqrt((a(n)+1)^2 - a(n)^2) = A000215(n).
MATHEMATICA
Table[2^(2^n) + 2^(2^(n + 1) - 1), {n, 0, 7}] (* Paul F. Marrero Romero, Jan 13 2024 *)
PROG
(Python)
for n in range(0, 8):
print(2**(2**n)+2**(2**(n+1)-1))
CROSSREFS
Sequence in context: A052598 A230691 A032071 * A222393 A367883 A359655
KEYWORD
nonn,easy
AUTHOR
César Aguilera, Aug 31 2023
STATUS
approved