[go: up one dir, main page]

login
A365161
Least k such that A000668(n) - k is prime, where A000668(n) is the n-th Mersenne prime.
2
1, 2, 2, 14, 12, 8, 18, 18, 30, 20, 170, 24, 114, 56, 156, 2510, 1824, 12, 3980, 3630, 16902, 284, 7712, 20022, 12930, 9698, 16232, 1058, 256016, 23712, 26298
OFFSET
1,2
COMMENTS
The distance between the n-th Mersenne prime and the previous prime.
FORMULA
a(n) = A001223(A059305(n)-1). - Michel Marcus, Aug 25 2023
a(n) = A000668(n) - A073715(n). - Amiram Eldar, Aug 10 2024
EXAMPLE
A000668(6) = 131071, the previous prime is 131063, so a(6) = 131071 - 131063 = 8.
MATHEMATICA
m[n_] := m[n] = (2^MersennePrimeExponent[n] - 1); a[k_, n_] := a[k, n] = m[n] - k; l[k_, n_] := l[k, n] = PrimeQ[a[k, n]]; Table[k = 1; Monitor[Parallelize[While[True, If[l[k, n], Break[]]; k++]; k], {n, k}], {n, 1, 20}]
CROSSREFS
Cf. A000040, A000668 (Mersenne primes), A001223, A059305, A073715, A365160.
Sequence in context: A068511 A306544 A060590 * A129083 A045685 A045676
KEYWORD
nonn,hard,more,changed
AUTHOR
Robert P. P. McKone, Aug 24 2023
EXTENSIONS
a(29)-a(31) from Michael S. Branicky, Sep 01 2024
STATUS
approved