[go: up one dir, main page]

login
A365036
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^2)).
2
1, 1, 3, -5, -23, 521, -1829, -71021, 1319697, 5905297, -683965709, 8664974891, 311864420473, -13981842414695, 6694007756619, 16448800124183491, -448649039951220959, -13236887251789967071, 1210629233913421852387, -12065049302884271631269
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( x + LambertW(2*x^2*exp(-2*x))/2 ).
a(n) = n! * Sum_{k=0..n} (-2*n+2*k+1)^(k-1) * binomial(k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(2*x^2*exp(-2*x))/2)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 17 2023
STATUS
approved