OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence.
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
25: {3,3}
36: {1,1,2,2}
48: {1,1,1,1,2}
49: {4,4}
100: {1,1,3,3}
121: {5,5}
160: {1,1,1,1,1,3}
169: {6,6}
196: {1,1,4,4}
225: {2,2,3,3}
289: {7,7}
361: {8,8}
441: {2,2,4,4}
448: {1,1,1,1,1,1,4}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], Total[prix[#]]==2*Total[Union[prix[#]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 23 2023
STATUS
approved