[go: up one dir, main page]

login
A364845
a(n) is the denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal, with the numerator h of n digits.
3
1, 7, 151, 494, 11511, 93039, 2332332, 9966699
OFFSET
1,2
COMMENTS
a(2) = 7 corresponds to the denominator of A068028.
EXAMPLE
n fraction approximated value
- ------------------- ------------------
1 3 3
2 22/7 3.1428571428571...
3 474/151 3.1390728476821...
4 1551/494 3.1396761133603...
5 36163/11511 3.1416036834332...
6 292292/93039 3.1416072829673...
7 7327237/2332332 3.1415926206046...
8 31311313/9966699 3.1415931192464...
...
MATHEMATICA
nmax = 8; a = {1}; hmin = kmin = 0; For[n = 2, n <= nmax, n++, minim = Infinity; h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; k = Select[Range[10^(n - 2), 10^n - 1], PalindromeQ]; lh = Length[h]; lk = Length[k]; For[i = 1, i <= lh, i++, For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - Pi]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; kmin = Part[k, j]]]]; AppendTo[a, kmin]]; a
CROSSREFS
Sequence in context: A070248 A329010 A309855 * A339582 A232446 A362491
KEYWORD
nonn,base,frac,more
AUTHOR
Stefano Spezia, Aug 10 2023
STATUS
approved