[go: up one dir, main page]

login
A364452
Smallest k such that 4^(4^n) - k is prime.
2
5, 5, 159, 569, 1557, 2439, 25353, 24317, 164073
OFFSET
1,1
COMMENTS
This is to 4 as A058220 is to 2 and A140331 is to 3.
a(8) > 22174.
FORMULA
a(n) = A064722(A137840(n)).
a(n) = A058220(2*n+1). - Michael S. Branicky, Aug 23 2024
EXAMPLE
a(2) = 5 because 4^(4^2) - 5 = 4294967291 is prime.
MATHEMATICA
lst={}; Do[Do[p=4^(4^n)-k; If[PrimeQ[p], AppendTo[lst, k]; Break[]], {k, 2, 11!}], {n, 7}]; lst
Table[k=1; Monitor[Parallelize[While[True, If[PrimeQ[4^(4^n)-k], Break[]]; k++]; k], k], {n, 1, 7}]
y[n_] := Module[{x = 4^(4^n)}, x - NextPrime[x, -1]]; Array[y, 7]
PROG
(PARI) a(n) = my(x = 4^(4^n)); x - precprime(x);
CROSSREFS
KEYWORD
more,nonn
AUTHOR
EXTENSIONS
a(8) using search and a(9) using A058220 from Michael S. Branicky, Aug 23 2024
STATUS
approved