[go: up one dir, main page]

login
A364335
G.f. satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^5).
3
1, 2, 17, 204, 2852, 43489, 701438, 11767095, 203223146, 3589167533, 64524575635, 1176860764416, 21723084076739, 405038036077647, 7617437252889030, 144328483391622298, 2752414654270742784, 52790626691557217602, 1017655117382823639414, 19706520281177438174530
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(3*n+2*k+1,k) * binomial(3*n+2*k+1,n-k) / (3*n+2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(3*n+2*k+1, n-k)/(3*n+2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 18 2023
STATUS
approved