%I #25 Sep 17 2023 01:22:50
%S 0,1,0,1,1,2,0,1,1,2,1,2,2,1,0,1,1,2,1,2,2,3,1,1,2,1,2,3,1,2,0,2,1,2,
%T 1,2,2,2,1,2,2,3,2,1,3,4,1,2,1,1,2,3,1,2,2,2,3,4,1,2,2,2,0,2,2,3,1,3,
%U 2,3,1,2,2,1,2,2,2,3,1,1,2,3,2,1,3,3,2,3,1,2,3,2,4,2,1,2,2,2,1,2,1,2,2,2,3,4,1,2,2,2,2
%N a(2) = 0; a(n) = a(n-1) + 1 if n is an odd prime; otherwise a(n) = max{a(k) : k is divisor of n, 1 < k < n}.
%C This sequence is a kind of measure of the "amount of information" in an integer. The post at Zhihu wonders whether one can calculate this sequence without using prime decomposition.
%H Zhihu, <a href="https://www.zhihu.com/question/548052659">Can the order of a number be known by bypassing the complicated calculation of "prime factor decomposing"?</a>, Aug 12 2022.
%F a(2) = 0,
%F a(n) = a(n-1) + 1 if n is an odd prime,
%F a(n) = max{a(k) : k|n, 1<k<n} otherwise.
%e a(238)=2, since a(2)=0, a(7)=2, a(14)=2, a(17)=1, a(34)=1, a(119)=2, and the largest among them is 2.
%e And a(239)=3, since 239 is a prime number, and a(238)=2.
%t Nest[Function[list,
%t Module[{n = Length[list] + 1},
%t Append[list,
%t If[PrimeQ[n], Last[list] + 1,
%t Max[(list[[First[#]]]) & /@ FactorInteger[n]]]]]], {0, 0}, 110]//Rest
%Y For values at primes, see A364332.
%K nonn
%O 2,6
%A _Steven Lu_, Jul 18 2023