[go: up one dir, main page]

login
A363811
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.
4
1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
OFFSET
0,3
COMMENTS
Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-3-5-4 and 4-5-3-1-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "7" and "8". See the Merino and Mütze reference, Table 3, entry "123478".
LINKS
Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3224,-3834,2896,-1312,320,-32).
FORMULA
G.f.: (1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4).
MATHEMATICA
CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4), {x, 0, 26}], x] (* Stefano Spezia, Jun 24 2023 *)
CROSSREFS
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363812, A363813, A006012.
Sequence in context: A150262 A101043 A101046 * A150263 A165534 A165535
KEYWORD
nonn,easy
AUTHOR
Andrei Asinowski, Jun 23 2023
STATUS
approved