[go: up one dir, main page]

login
A363790
Numbers k such that k and k+1 are both primitive binary Niven numbers (A363787).
3
115, 155, 204, 284, 355, 395, 404, 555, 564, 595, 675, 804, 835, 846, 1075, 1124, 1164, 1182, 1266, 1315, 1434, 1555, 1604, 1686, 1795, 1938, 2075, 2124, 2195, 2244, 2315, 2324, 2358, 2435, 2595, 3084, 3204, 3282, 3366, 4124, 4195, 4206, 4235, 4244, 4364, 4458
OFFSET
1,1
LINKS
EXAMPLE
115 is a term since 115 and 116 are both primitive binary Niven numbers.
MATHEMATICA
binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; q[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]); Select[Range[5000], q[#] && q[# + 1] &]
PROG
(PARI) isbinniv(n) = !(n % hammingweight(n));
isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
is(n) = isprim(n) && isprim(n+1);
CROSSREFS
Subsequence of A049445, A330931 and A363787.
Subsequences: A363791, A363792.
Sequence in context: A129544 A095621 A051975 * A183626 A224673 A181931
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jun 22 2023
STATUS
approved