[go: up one dir, main page]

login
A363752
Primes prime(k) such that prime(k) mod k is prime.
2
5, 7, 17, 19, 23, 41, 47, 53, 61, 71, 79, 89, 101, 107, 113, 127, 131, 137, 139, 151, 163, 167, 173, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 257, 269, 277, 281, 313, 317, 347, 359, 367, 373, 383, 397, 421, 433, 443, 457, 463, 479, 503, 521, 541
OFFSET
1,1
LINKS
FORMULA
a(n) = A000040(A363751(n)).
EXAMPLE
The 9th prime is 23 and 23 mod 9 = 5, which is prime, so 23 is a term.
MATHEMATICA
Table[If[PrimeQ[Mod[Prime[k], k]], Prime[k], Nothing], {k, 1, 100}]
PROG
(Python)
from sympy import prime, isprime
a363752=[]
for k in range(1, 101):
if isprime(prime(k)%k):
a363752.append(prime(k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Nicholas Leonard, Jun 19 2023
STATUS
approved