[go: up one dir, main page]

login
A363508
G.f. satisfies A(x) = exp( Sum_{k>=1} (4 + A(x^k)) * x^k/k ).
3
1, 5, 20, 80, 340, 1516, 7046, 33736, 165436, 826566, 4193348, 21542664, 111848161, 585949358, 3093526496, 16442687695, 87914559018, 472522551440, 2551591234444, 13836226412386, 75311992329508, 411336641019998, 2253641429297336
OFFSET
0,2
LINKS
FORMULA
A(x) = Sum_{k>=0} a(k) * x^k = 1/(1-x)^4 * 1/Product_{k>=0} (1-x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( 4 + Sum_{d|k} d * a(d-1) ) * a(n-k).
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (4+subst(A, x, x^k))*x^k/k)+x*O(x^n))); Vec(A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 06 2023
STATUS
approved