[go: up one dir, main page]

login
A362736
E.g.f. satisfies A(x) = exp(x^2 + x / A(x)).
3
1, 1, 1, 4, -3, 96, -755, 10368, -147623, 2492416, -47137959, 996741120, -23260103339, 594198429696, -16492683271259, 494278721929216, -15908038836914895, 547238863907586048, -20038031401448021327, 778147549666716155904, -31943565308583934360019
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: x / LambertW(x*exp(-x^2)) = exp( x^2 + LambertW(x*exp(-x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (-n+2*k+1)^(n-k-1) / (k! * (n-2*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2+lambertw(x*exp(-x^2)))))
CROSSREFS
Cf. A362690.
Sequence in context: A299188 A300026 A349589 * A266255 A351792 A362674
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 01 2023
STATUS
approved