[go: up one dir, main page]

login
A362494
E.g.f. satisfies A(x) = exp(x - x^4/4 * A(x)^4).
3
1, 1, 1, 1, -5, -149, -2249, -26249, -251159, -1443959, 21646801, 1209344401, 35457894451, 817789456771, 14796993881671, 137893562065351, -4661597156689199, -372730180154530799, -16419790692323174879, -559989133713039523679, -14492546886670841884949
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(x^4 * exp(4*x))/4) = ( LambertW(x^4 * exp(4*x))/x^4 )^(1/4).
a(n) = n! * Sum_{k=0..floor(n/4)} (-1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^4*exp(4*x))/4)))
CROSSREFS
Cf. A362491.
Sequence in context: A075186 A352758 A226803 * A332716 A230666 A113560
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2023
STATUS
approved