[go: up one dir, main page]

login
A362479
E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)^3).
3
1, 1, 1, 4, 49, 481, 4471, 57751, 1036393, 19939753, 399150541, 9082285741, 237719388721, 6759766432849, 204408880370059, 6672899023062091, 236080878357745681, 8926817568378582481, 357421258163575234873, 15158257732928974255993
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-3*x^3/2 * exp(3*x))/3) = ( -2 * LambertW(-3*x^3/2 * exp(3*x))/(3*x^3) )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (1/2)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^3/2*exp(3*x))/3)))
CROSSREFS
Column k=3 of A362490.
Cf. A362391.
Sequence in context: A067474 A053769 A355481 * A173038 A198971 A348547
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 21 2023
STATUS
approved