[go: up one dir, main page]

login
A362392
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).
7
1, 1, 1, 7, 49, 241, 2041, 26041, 282913, 3449377, 57170161, 973059121, 16847893921, 343341027745, 7680743819113, 175958943331081, 4375517632543681, 118932887426911681, 3374685950589927649, 100735118425384221025, 3217474234925998764481
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-x^3 * exp(x))) = -LambertW(-x^3 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(x)))))
CROSSREFS
Column k=6 of A362378.
Sequence in context: A207177 A207089 A375610 * A224150 A094430 A188561
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved