[go: up one dir, main page]

login
A362266
Triangle read by rows: T(n,k) = LCM({p_j-1 : j=1..n})/(p_k-1) for prime p.
1
1, 2, 1, 4, 2, 1, 12, 6, 3, 2, 60, 30, 15, 10, 6, 60, 30, 15, 10, 6, 5, 240, 120, 60, 40, 24, 20, 15, 720, 360, 180, 120, 72, 60, 45, 40, 7920, 3960, 1980, 1320, 792, 660, 495, 440, 360, 55440, 27720, 13860, 9240, 5544, 4620, 3465, 3080, 2520, 1980
OFFSET
1,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
FORMULA
T(n,1) = A058254(n), T(n,k) = A058254(n)/A006093(k).
EXAMPLE
First 10 rows of the triangle:
1: 1
2: 2 1
3: 4 2 1
4: 12 6 3 2
5: 60 30 15 10 6
6: 60 30 15 10 6 5
7: 240 120 60 40 24 20 15
8: 720 360 180 120 72 60 45 40
9: 7920 3960 1980 1320 792 660 495 440 360
10: 55440 27720 13860 9240 5544 4620 3465 3080 2520 1980
...
MATHEMATICA
nn = 10; Array[Set[s[#], Prime[#] - 1] &, nn + 1]; Flatten@ Table[Table[#/s[k], {k, n}] &[LCM @@ Array[s, n]], {n, nn}]
PROG
(PARI) row(n) = my(L=lcm(apply(p->p-1, primes(n)))); vector(n, k, L/(prime(k)-1)); \\ Michel Marcus, Jul 15 2023
CROSSREFS
Sequence in context: A127124 A127136 A239101 * A145983 A245025 A257495
KEYWORD
nonn,tabl
AUTHOR
Michael De Vlieger, Jul 10 2023
STATUS
approved