OFFSET
1,1
COMMENTS
EXAMPLE
The unitary abundancy indices of the first terms are 72/35 > 80/39 > 240/119 > 800/399 > 4032/2015 > 5832/2915 > ... > 2.
MATHEMATICA
f1[p_, e_] := 1 + 1/p^e; f2[p_, e_] := p^e/(p^e + 1);
(* Returns the unitary abundancy index of n if n is primitive unitary abundant, and 0 otherwise: *)
uabIndex[n_] := If[(r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2, r, 0]; uabIndex[1] = 0;
seq[kmax_] := Module[{s = {}, uab, uabm = 3}, Do[If[0 < (uab = uabIndex[k]) < uabm, uabm = uab; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
PROG
(PARI) uabindex(n) = {my(f = factor(n), r); r = prod(i = 1, #f~, 1 + 1/f[i, 1]^f[i, 2]); if(r <= 2, return(0)); if(vecmax(vector(#f~, i, f[i, 1]^f[i, 2]/(f[i, 1]^f[i, 2] + 1))) * r < 2, r, 0); } \\ Returns the unitary abundancy index of n if n is primitive unitary abundant, and 0 otherwise.
lista(kmax) = {my(uab, uabm = 3); for(k = 1, kmax, uab = uabindex(k); if(uab > 0 && uab < uabm, uabm = uab; print1(k, ", "))); }
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 06 2023
STATUS
approved