[go: up one dir, main page]

login
A361218
Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle.
3
1, 4, 11, 29, 94, 263, 968, 3416, 11520, 41912, 136972, 481388, 1743784, 6275886, 23615432, 93819128, 368019576, 1367900808, 5403282616, 19831367476, 76031433360, 300581321056, 1143307393600, 4542840116352, 17001097572544, 65314285778004, 246695766031432
OFFSET
1,2
COMMENTS
Tilings that are rotations or reflections of each other are considered distinct.
EXAMPLE
The following table shows the sets of pieces that give the maximum number of tilings for n <= 27. The solutions are unique except for n = 1.
\ Number of pieces of size
n \ 1 X 1 | 1 X 2 | 1 X 3 | 1 X 4
----+-------+-------+-------+------
1 | 2 | 0 | 0 | 0
1 | 0 | 1 | 0 | 0
2 | 2 | 1 | 0 | 0
3 | 2 | 2 | 0 | 0
4 | 4 | 2 | 0 | 0
5 | 4 | 3 | 0 | 0
6 | 4 | 4 | 0 | 0
7 | 5 | 3 | 1 | 0
8 | 5 | 4 | 1 | 0
9 | 7 | 4 | 1 | 0
10 | 7 | 5 | 1 | 0
11 | 7 | 6 | 1 | 0
12 | 9 | 6 | 1 | 0
13 | 8 | 6 | 2 | 0
14 | 10 | 6 | 2 | 0
15 | 10 | 7 | 2 | 0
16 | 10 | 6 | 2 | 1
17 | 10 | 7 | 2 | 1
18 | 12 | 7 | 2 | 1
19 | 12 | 8 | 2 | 1
20 | 12 | 9 | 2 | 1
21 | 13 | 8 | 3 | 1
22 | 13 | 9 | 3 | 1
23 | 15 | 9 | 3 | 1
24 | 15 | 10 | 3 | 1
25 | 15 | 11 | 3 | 1
26 | 17 | 11 | 3 | 1
27 | 17 | 12 | 3 | 1
CROSSREFS
Second column of A361216.
Sequence in context: A369844 A351438 A110579 * A024829 A296290 A224215
KEYWORD
nonn
AUTHOR
STATUS
approved