OFFSET
1,2
COMMENTS
Tilings that are rotations or reflections of each other are considered distinct.
EXAMPLE
The following table shows the sets of pieces that give the maximum number of tilings for n <= 27. The solutions are unique except for n = 1.
\ Number of pieces of size
n \ 1 X 1 | 1 X 2 | 1 X 3 | 1 X 4
----+-------+-------+-------+------
1 | 2 | 0 | 0 | 0
1 | 0 | 1 | 0 | 0
2 | 2 | 1 | 0 | 0
3 | 2 | 2 | 0 | 0
4 | 4 | 2 | 0 | 0
5 | 4 | 3 | 0 | 0
6 | 4 | 4 | 0 | 0
7 | 5 | 3 | 1 | 0
8 | 5 | 4 | 1 | 0
9 | 7 | 4 | 1 | 0
10 | 7 | 5 | 1 | 0
11 | 7 | 6 | 1 | 0
12 | 9 | 6 | 1 | 0
13 | 8 | 6 | 2 | 0
14 | 10 | 6 | 2 | 0
15 | 10 | 7 | 2 | 0
16 | 10 | 6 | 2 | 1
17 | 10 | 7 | 2 | 1
18 | 12 | 7 | 2 | 1
19 | 12 | 8 | 2 | 1
20 | 12 | 9 | 2 | 1
21 | 13 | 8 | 3 | 1
22 | 13 | 9 | 3 | 1
23 | 15 | 9 | 3 | 1
24 | 15 | 10 | 3 | 1
25 | 15 | 11 | 3 | 1
26 | 17 | 11 | 3 | 1
27 | 17 | 12 | 3 | 1
CROSSREFS
KEYWORD
nonn
AUTHOR
Pontus von Brömssen, Mar 05 2023
STATUS
approved