[go: up one dir, main page]

login
A360828
Decimal expansion of the ratio between the perimeter of the first Morley triangle of an isosceles right triangle and the perimeter of this isosceles right triangle.
2
1, 6, 6, 4, 8, 2, 2, 8, 4, 2, 9, 7, 8, 3, 3, 9, 3, 9, 4, 0, 0, 3, 0, 9, 5, 7, 2, 8, 2, 9, 0, 6, 5, 6, 9, 8, 1, 7, 4, 3, 0, 2, 2, 8, 5, 8, 6, 1, 4, 0, 9, 9, 6, 8, 9, 6, 4, 7, 1, 0, 8, 3, 2, 2, 7, 3, 6, 5, 6, 3, 9, 4, 5, 6, 3, 5, 4, 8, 6, 3, 2, 3, 6, 3, 0, 9, 2, 7, 3, 3, 4, 6, 1, 8, 3, 7, 2, 2, 9, 4
OFFSET
0,2
COMMENTS
The first Morley triangle, also called the Morley triangle, of any triangle is always equilateral (see Wikipedia link).
If an isosceles right triangle ABC has side lengths (a, a, a*sqrt(2)), then it has a circumradius R = a*sqrt(2)/2, and a perimeter P = (2 + sqrt(2))*a, and its first Morley triangle has side a' and perimeter P' = 3*a', with a' = 8*R*sin(Pi/6)*sin(Pi/12)*sin(Pi/12) = a*sqrt(2)*(2-sqrt(3))/2. This gives the ratio P'/P = (3/2) * (sqrt(2)-1) * (2-sqrt(3)) (see Illustration).
FORMULA
Equals (3/2) * (sqrt(2)-1) * (2-sqrt(3)).
EXAMPLE
0.1664822842978339394003095728290656981743022858...
MAPLE
evalf((1/2)*(3*(sqrt(2)-1))*(2-sqrt(3)), 100);
MATHEMATICA
RealDigits[(3/2)*(Sqrt[2] - 1)*(2 - Sqrt[3]), 10, 100][[1]] (* Amiram Eldar, Feb 28 2023 *)
PROG
(PARI) (3/2) * (sqrt(2)-1) * (2-sqrt(3)) \\ Michel Marcus, Mar 03 2023
CROSSREFS
Cf. A359837 (ratio of perimeters in the case of an equilateral triangle), A360829 (ratio of areas in the case of an isosceles right triangle).
Sequence in context: A245297 A371504 A002421 * A209938 A165953 A045885
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Feb 28 2023
STATUS
approved