OFFSET
0,2
COMMENTS
The first Morley triangle, also called the Morley triangle, of any triangle is always equilateral (see Wikipedia link).
If an isosceles right triangle ABC has side lengths (a, a, a*sqrt(2)), then it has a circumradius R = a*sqrt(2)/2, and a perimeter P = (2 + sqrt(2))*a, and its first Morley triangle has side a' and perimeter P' = 3*a', with a' = 8*R*sin(Pi/6)*sin(Pi/12)*sin(Pi/12) = a*sqrt(2)*(2-sqrt(3))/2. This gives the ratio P'/P = (3/2) * (sqrt(2)-1) * (2-sqrt(3)) (see Illustration).
LINKS
Bernard Schott, Illustration of the Morley triangle of an isosceles right triangle.
Wikipedia, Morley's trisector theorem.
FORMULA
Equals (3/2) * (sqrt(2)-1) * (2-sqrt(3)).
EXAMPLE
0.1664822842978339394003095728290656981743022858...
MAPLE
evalf((1/2)*(3*(sqrt(2)-1))*(2-sqrt(3)), 100);
MATHEMATICA
RealDigits[(3/2)*(Sqrt[2] - 1)*(2 - Sqrt[3]), 10, 100][[1]] (* Amiram Eldar, Feb 28 2023 *)
PROG
(PARI) (3/2) * (sqrt(2)-1) * (2-sqrt(3)) \\ Michel Marcus, Mar 03 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Feb 28 2023
STATUS
approved