OFFSET
3,4
FORMULA
a(n) = floor((Pi/4)*(cot(Pi/n)^2)).
EXAMPLE
For n = 5, the circle inscribed in a regular pentagon with sides of unit length has area (Pi/4)*cot(Pi/5)^2 = 1.4878796365..., so a(5) = floor(1.4878796365...) = 1.
MAPLE
a:= n-> floor(Pi/(2*tan(Pi/n))^2):
seq(a(n), n=3..65); # Alois P. Heinz, Feb 20 2023
MATHEMATICA
a[n_] := Floor[(Pi/4)*Cot[Pi/n]^2]; Array[a, 60, 3] (* Amiram Eldar, Feb 24 2023 *)
PROG
(PARI) a(n) = floor((Pi/4)/tan(Pi/n)^2) \\ Andrew Howroyd, Feb 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
A. Timothy Royappa, Feb 20 2023
EXTENSIONS
More terms from Andrew Howroyd, Feb 20 2023
STATUS
approved