[go: up one dir, main page]

login
A360609
E.g.f. satisfies A(x) = exp(x*A(x)^3) / (1-x).
3
1, 2, 17, 313, 9053, 357941, 17975605, 1095604133, 78570635225, 6482415935449, 604889610870881, 62989604872166897, 7241672622495518773, 911048848278644776949, 124497704904842673086285, 18364053909500922198147421, 2908158473059042016441887025
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: (LambertW( -3*x/(1-x)^3 ) / (-3*x))^(1/3).
a(n) ~ 3^(-5/6) * (2^(4/3) + 2*(3 + sqrt(4*exp(1) + 9))^(1/3) * exp(-2/3) - 2^(2/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3))^(1/6) * 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(4/9) * sqrt(4 - 2^(4/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + 3*2^(2/3) * exp(-2/3) * (3 + sqrt(4*exp(1) + 9))^(1/3)) * n^(n-1) * (12 + 4*sqrt(4*exp(1) + 9))^(n/3) / (exp(7/18 + 5*n/3) * (2 - 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + exp(-2/3) * (12 + 4*sqrt(4*exp(1) + 9))^(1/3))^n * ((3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2^(2/3))^(3/2) * sqrt(2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2)). - Vaclav Kotesovec, Mar 06 2023
a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n+2*k,n-k)/k!. - Seiichi Manyama, Mar 09 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(-3*x/(1-x)^3)/(-3*x))^(1/3)))
CROSSREFS
Cf. A370876.
Sequence in context: A090306 A304857 A007785 * A201785 A368488 A204249
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2023
STATUS
approved