[go: up one dir, main page]

login
A360587
a(n) is the least positive integer k such that k*(k+1)*...*(k+n-1) does not contain the digit 2, or -1 if there is no such k.
0
1, 2, 1, 3, 7, 2, 1, 3, 3, 2, 1, 1, 3, 2, 1, 5, 10, 10, 10, 17, 4, 8, 38, 38, 19, 17, 2, 1, 1, 3
OFFSET
1,2
COMMENTS
a(n) is the least positive integer k such that (k+n-1)!/(k-1)! does not contain the digit 2, or -1 if there is no such k.
a(32) = 13.
Conjecture: a(n) = -1 for n = 31 and all n >= 33.
EXAMPLE
a(4) = 3 because 3*4*5*6 = 360 does not contain the digit 2, while 1*2*3*4 = 24 and 2*3*4*5 = 120 do.
MAPLE
f:= proc(n) local k, t;
t:= n!;
for k from 1 to 100000 do
if not member(2, convert(t, base, 10)) then return k fi;
t:= t*(n+k)/k;
od:
-1
end proc:
map(f, [$1..32]);
CROSSREFS
Cf. A173333.
Sequence in context: A176120 A369595 A220621 * A058170 A238206 A127896
KEYWORD
nonn,base,more
AUTHOR
Robert Israel, Feb 12 2023
STATUS
approved