[go: up one dir, main page]

login
A360174
Triangle read by rows. T(n, k) = (k + 1) * abs(Stirling1(n, k)).
2
1, 0, 2, 0, 2, 3, 0, 4, 9, 4, 0, 12, 33, 24, 5, 0, 48, 150, 140, 50, 6, 0, 240, 822, 900, 425, 90, 7, 0, 1440, 5292, 6496, 3675, 1050, 147, 8, 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9, 0, 80640, 328752, 472496, 336420, 134694, 31752, 4368, 324, 10
OFFSET
0,3
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 0, 2, 3;
[3] 0, 4, 9, 4;
[4] 0, 12, 33, 24, 5;
[5] 0, 48, 150, 140, 50, 6;
[6] 0, 240, 822, 900, 425, 90, 7;
[7] 0, 1440, 5292, 6496, 3675, 1050, 147, 8;
[8] 0, 10080, 39204, 52528, 33845, 11760, 2254, 224, 9;
MAPLE
T := (n, k) -> (k + 1)*abs(Stirling1(n, k)):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
CROSSREFS
Cf. A208529 (column 1), A006002 (subdiagonal), A000774 (row sums).
Cf. A069138 (Stirling2 counterpart), A360205 (Lah counterpart).
Sequence in context: A269591 A262878 A317239 * A089596 A319876 A105805
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 08 2023
STATUS
approved