[go: up one dir, main page]

login
A360011
Integers k such that the product of the first k primes is a Niven number.
1
0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 16, 18, 19, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 70, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
OFFSET
1,3
COMMENTS
Integers k such that A002110(k) belongs to A005349.
So, the sequence A002110(a(n)) is a subsequence of A359960. - Bernard Schott, Jan 21 2023
EXAMPLE
A002110(5) = 2310 and 2310 is divisible by 2+3+1+0=6, so 5 is a term.
MATHEMATICA
a={}; For[k=0, k<=100, k++, p=Product[Prime[i], {i, k}]; If[Mod[p, Total[IntegerDigits[p]]]==0, AppendTo[a, k]]]; a (* Stefano Spezia, Jan 21 2023 *)
PROG
(PARI) isok(k) = my(p=factorback(primes(k))); !(p % sumdigits(p));
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Jan 21 2023
STATUS
approved