[go: up one dir, main page]

login
A359699
Decimal expansion of x such that Gamma(t) and t^x*e^-t are tangent at one point.
0
2, 8, 8, 5, 1, 8, 2, 1, 2, 2, 4, 9, 9, 9, 9, 3, 1, 7, 5, 5, 1, 9, 7, 9, 6, 2, 2, 4, 3, 7, 3, 8, 5, 1, 2, 3, 5, 1, 4, 1, 3, 7, 0, 2, 7, 4, 3, 2, 4, 7, 8, 1, 8, 3, 4, 7, 2, 6, 3, 1, 5, 9, 0, 8, 1, 7, 8, 8, 2, 0, 8, 0, 8, 3, 8, 3, 3, 5, 6, 1, 4, 9, 3, 6, 3, 1, 4, 1, 5, 9, 8, 4, 1, 3, 6, 3, 4, 1, 3, 7, 6, 2, 2, 4, 5, 4
OFFSET
1,1
EXAMPLE
2.885182122499993175519796224373851235141...
MATHEMATICA
x[t_] := t*(1 + PolyGamma[0, t]);
x[t] /. FindRoot[Gamma[t] == Exp[-t]*t^x[t], {t, 2}, WorkingPrecision -> 106] // RealDigits // First (* Jean-François Alcover, Mar 08 2023 *)
PROG
(PARI) apply(x->((x+lngamma(x))/log(x)), solve(x=2, 3, x*log(x)*(1+psi(x)) - (x+lngamma(x)))) \\ Michel Marcus, Mar 08 2023
CROSSREFS
Sequence in context: A198234 A197385 A010596 * A131920 A180308 A155739
KEYWORD
cons,nonn
AUTHOR
Jodi Spitz, Mar 07 2023
STATUS
approved