OFFSET
1,4
LINKS
Wikipedia, Sophomore's Dream
FORMULA
Equals Sum_{n >= 1} 1/(2*n - 1)^n.
More generally, Integral_{x = 0..1} 1/x^(t*x^2) dx = Sum_{n >= 1} t^(n-1)/(2*n - 1)^n. See A253299 (case t = -1).
EXAMPLE
1.119545120136127596612676247029827036460046957876427628986749 ...
MAPLE
evalf(Sum(1/(2*n-1)^n, n = 1..infinity), 120);
MATHEMATICA
NIntegrate[x^(-x^2), {x, 0, 1}, WorkingPrecision -> 103] // RealDigits // First
PROG
(PARI) intnum(x = 0, 1, x^(-x^2))
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Dec 24 2022
STATUS
approved