[go: up one dir, main page]

login
A359105
Numbers k such that each digit from 0 to 9 appears in either k^2 or k^3, but not in both.
1
69, 1633, 2244, 2303, 3379, 6603, 31563
OFFSET
1,1
COMMENTS
Any subsequent terms are > 10^11. - Lucas A. Brown, Jan 02 2023
EXAMPLE
1633 is a term of the sequence because 1633^2=2666689, having digits: 2,6,8,9 and 1633^3=4354703137, having digits 0,1,3,4,5,7.
PROG
(PARI) for(n=2, 10^10, if(#setintersect(Set(digits(n^2)), Set(digits(n^3)))==0 && #setunion(Set(digits(n^2)), Set(digits(n^3)))==10, print1(n, ", ")));
(PARI) isok(k) = my(s2=Set(digits(k^2)), s3=Set(digits(k^3))); (#setintersect(s2, s3)==0) && (#setunion(s2, s3)==10); \\ Michel Marcus, Dec 20 2022
CROSSREFS
Subsequence of A029787.
Sequence in context: A264283 A333034 A200826 * A133708 A253334 A017785
KEYWORD
nonn,base,more
AUTHOR
Alexandru Petrescu, Dec 18 2022
STATUS
approved