[go: up one dir, main page]

login
A358983
a(n) is the first emirp p that starts a sequence of n emirps x(1),...,x(n) with x(1) = p and x(k+1) = 2*x(k) - reverse(x(k)), but 2*x(n) - reverse(x(n)) is not an emirp.
0
13, 941, 1471, 120511, 368631127
OFFSET
1,1
EXAMPLE
a(3) = 1471 because 1471 is an emirp, 2*1471 - 1741 = 1201 is an emirp, and 2*1201 - 1021 = 1381 is an emirp, but 2*1381 - 1831 = 931 is not an emirp.
MAPLE
rev:= proc(n) local L, t;
L:= convert(n, base, 10);
add(L[-t]*10^(t-1), t=1..nops(L));
end proc:
g:= proc(n) local x, n, r;
t:= 0; x:= n;
do
r:= rev(x);
if r = x or not isprime(x) or not isprime(r) then return t fi;
t:= t+1;
x:= 2*x - r;
od
end proc:
V:= Vector(5): count:= 0:
for n from 13 by 2 while count < 5 do
v:= g(n);
if v > 0 and V[v] = 0 then
V[v]:= n; count:= count+1
fi
od:
convert(V, list);
CROSSREFS
Sequence in context: A274544 A376463 A267915 * A096084 A203708 A342811
KEYWORD
nonn,base,more
AUTHOR
J. M. Bergot and Robert Israel, Dec 08 2022
STATUS
approved