OFFSET
1,1
COMMENTS
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.
LINKS
EXAMPLE
The terms together with their corresponding rooted trees begin:
8: (ooo)
16: (oooo)
24: (ooo(o))
28: (oo(oo))
32: (ooooo)
36: (oo(o)(o))
38: (o(ooo))
42: (o(o)(oo))
48: (oooo(o))
49: ((oo)(oo))
53: ((oooo))
54: (o(o)(o)(o))
56: (ooo(oo))
57: ((o)(ooo))
63: ((o)(o)(oo))
64: (oooooo)
72: (ooo(o)(o))
76: (oo(ooo))
MATHEMATICA
MGTree[n_]:=If[n==1, {}, MGTree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], Depth[MGTree[#]]-1<Count[MGTree[#], {}, {-2}]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 01 2022
STATUS
approved