OFFSET
0,2
LINKS
Michael I. Shamos, A catalog of the real numbers (2011) p.100.
FORMULA
Equals Sum_{k >= 1} (-1)^(k+1)*/((k+2)*(k+3)).
Equals 2*log(2) - 4/3 = Sum_{k >= 2} 1/(4*k^3 - k) = Sum_{k >= 1} (zeta(2*k + 1) - 1)/(4^k). [from the Shamos reference]
Equals Sum_{k >= 1} 1/((2^k)*(4*k + 12)). [from the Shamos reference]
Equals Sum_{k>=3} (-1)^(k+1)/A002378(k). - Amiram Eldar, Nov 21 2022
EXAMPLE
0.0529610277865572855011309095830198028176669353...
MATHEMATICA
Join[{0}, RealDigits[2*Log[2] - 4/3, 10, 120][[1]]] (* Amiram Eldar, Nov 21 2022 *)
PROG
(PARI) 2*log(2) - 4/3
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Claude H. R. Dequatre, Nov 20 2022
STATUS
approved