[go: up one dir, main page]

login
A358516
Decimal expansion of Sum_{k >= 1} (-1)^(k+1)*1/((k+2)*(k+3)).
2
0, 5, 2, 9, 6, 1, 0, 2, 7, 7, 8, 6, 5, 5, 7, 2, 8, 5, 5, 0, 1, 1, 3, 0, 9, 0, 9, 5, 8, 3, 0, 1, 9, 8, 0, 2, 8, 1, 7, 6, 6, 6, 9, 3, 5, 3, 8, 7, 1, 7, 7, 1, 7, 4, 9, 0, 8, 0, 2, 6, 6, 8, 5, 6, 5, 3, 4, 5, 3, 9, 1, 0, 6, 0, 5, 6, 0, 9, 7, 8, 7, 8, 3, 9, 3, 3, 2, 0, 6, 5, 9, 5, 0, 4
OFFSET
0,2
LINKS
FORMULA
Equals Sum_{k >= 1} (-1)^(k+1)*/((k+2)*(k+3)).
Equals 2*log(2) - 4/3 = Sum_{k >= 2} 1/(4*k^3 - k) = Sum_{k >= 1} (zeta(2*k + 1) - 1)/(4^k). [from the Shamos reference]
Equals Sum_{k >= 1} 1/((2^k)*(4*k + 12)). [from the Shamos reference]
Equals Sum_{k>=3} (-1)^(k+1)/A002378(k). - Amiram Eldar, Nov 21 2022
EXAMPLE
0.0529610277865572855011309095830198028176669353...
MATHEMATICA
Join[{0}, RealDigits[2*Log[2] - 4/3, 10, 120][[1]]] (* Amiram Eldar, Nov 21 2022 *)
PROG
(PARI) 2*log(2) - 4/3
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved