[go: up one dir, main page]

login
A358426
a(n) is the least prime p such that (p^2 - 6)/5^n is prime.
2
3, 11, 41, 359, 109, 13859, 67391, 276359, 10036141, 11057609, 511057609, 4528004891, 35817391, 194860036141, 154261057609, 1143030588859, 6669469411141, 35444788401359, 349076695973641, 982316442067391, 3805192418629891, 7047685094411141, 190153153844411141, 4915609391637379891
OFFSET
0,1
LINKS
FORMULA
a(n)^2-6 = 5^n * A358422(n).
EXAMPLE
a(3) = 359 because 359^2 - 6 = 128875 = 5^3 * 1031 where 359 and 1031 are prime, and no smaller prime works.
MAPLE
f:= proc(n) local v, a, b, k, p, q;
v:= 5^n;
a:= numtheory:-msqrt(6, v);
if a < v/2 then b:= v-a
else b:= a; a:= v-a
fi;
for k from 0 do
for q in [k*v+a, k*v+b] do
if isprime(q) then
p:= (q^2-6)/v;
if isprime(p) then return q fi;
fi
od od
end proc:
map(f, [$0..30]);
CROSSREFS
Cf. A358422.
Sequence in context: A149067 A018962 A102417 * A096147 A225431 A359248
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 15 2022
STATUS
approved