OFFSET
1,1
COMMENTS
Primes p such that GF(p) is a splitting field for the polynomial x^7 - 7*x + 3.
LINKS
Guillaume Duval, Théorème de Chebotarev et Congruences de suites récurrentes linéaires, liens avec les algorithmes de factorisations sur Fp, arXiv:2208.08899 [math.NT], 2022. In French. See page 24.
Wikipedia, Splitting field.
EXAMPLE
x^7 - 7*x + 3 == (x + 82) * (x + 298) * (x + 407) * (x + 883) * (x + 911) * (x + 1371) * (x + 1685) (mod 1879), so 1879 is a term.
PROG
(PARI) T(x)=x^7-7*x+3;
is(n) = #factor(Mod(1, n)*T(x))~ == 7;
forprime (n=2, 10^6, if(is(n), print1(n, ", ") ) ); \\ Joerg Arndt, Nov 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 31 2022
STATUS
approved