[go: up one dir, main page]

login
A358147
Primes p such that the polynomial x^7 - 7*x + 3 (mod p) is the product of seven linear factors.
0
1879, 5381, 5783, 8819, 8893, 12007, 12917, 13967, 14293, 15727, 18311, 20357, 20441, 22639, 26833, 27791, 28711, 31177, 32233, 33829, 35051, 35963, 38167, 40867, 42667, 43003, 46831, 47269, 49937, 51893, 55717, 58603, 59273, 62591, 63487, 64937, 65543, 68881, 72997, 75323, 75659, 75991, 85517
OFFSET
1,1
COMMENTS
Primes p such that GF(p) is a splitting field for the polynomial x^7 - 7*x + 3.
EXAMPLE
x^7 - 7*x + 3 == (x + 82) * (x + 298) * (x + 407) * (x + 883) * (x + 911) * (x + 1371) * (x + 1685) (mod 1879), so 1879 is a term.
PROG
(PARI) T(x)=x^7-7*x+3;
is(n) = #factor(Mod(1, n)*T(x))~ == 7;
forprime (n=2, 10^6, if(is(n), print1(n, ", ") ) ); \\ Joerg Arndt, Nov 01 2022
CROSSREFS
Sequence in context: A045201 A020407 A320719 * A235193 A072494 A260137
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 31 2022
STATUS
approved