[go: up one dir, main page]

login
A358002
Numbers k such that one of k-A001414(k) and k+A001414(k) is a prime and the other is the square of a prime.
1
135, 936, 1431, 3510, 5005, 5106, 5278, 9471, 10648, 10659, 22126, 26724, 27420, 27840, 37014, 37149, 39321, 40311, 54730, 59031, 62830, 87186, 124914, 128616, 129411, 133494, 187705, 196078, 208285, 209451, 212695, 309885, 322191, 325465, 375513, 410515, 412476, 433041, 459844, 466620, 595833, 622083
OFFSET
1,1
COMMENTS
The Generalized Bunyakovsky conjecture implies that there are, for example, infinitely many primes q == 11 (mod 26) such that p = (q^2+9)/26 and 28*p+9 are prime, and then 27*p is in the sequence.
LINKS
EXAMPLE
a(4) = 3510 is a term because 3510 = 2*3^3*5*13 so A001414(3510) = 2+3*3+5+13 = 29 and 3510-29 = 3481 = 29^2 is the square of a prime, while 3510+29 = 3539 is prime.
MAPLE
filter:= proc(n) local t, s, x, y;
s:= add(t[1]*t[2], t = ifactors(n)[2]);
x:= s+n; y:= n-s;
if issqr(x) then isprime(sqrt(x)) and isprime(y)
else issqr(y) and isprime(sqrt(y)) and isprime(x)
fi
end proc:
select(filter, [$1..10^6]);
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 23 2022
STATUS
approved