[go: up one dir, main page]

login
A357442
Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.
1
1, 1, 3, 5, 17, 53, 260, 1466, 10915, 93196, 917898, 10015299, 119914982, 1557364352, 21797494987, 326930305166, 5230756117008, 88922108947567, 1600594738591550, 30411281088326498, 608225534389576956, 12772735698577492558
OFFSET
1,3
FORMULA
See PARI code for the formula. - Max Alekseyev, Nov 10 2022
PROG
(PARI) { a357442(n) = ( sumdiv(n, d, (n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0, n\2, n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n, d, eulerphi(d)*sum(k=0, n\d\2, (n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ Max Alekseyev, Nov 10 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 06 2022, based on an email from Barry Cipra, Oct 26 2022
EXTENSIONS
Terms a(7) onward from Max Alekseyev, Nov 10 2022
STATUS
approved