[go: up one dir, main page]

login
A357144
Square array, A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) * f(k)) where f(m) = A002487(m)/A002487(m+1) and g is the inverse of f.
2
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 8, 3, 0, 0, 4, 1, 1, 4, 0, 0, 5, 32, 15, 32, 5, 0, 0, 6, 14, 6, 6, 14, 6, 0, 0, 7, 4, 7, 256, 7, 4, 7, 0, 0, 8, 5, 9, 2, 2, 9, 5, 8, 0, 0, 9, 128, 63, 48, 35, 48, 63, 128, 9, 0, 0, 10, 6, 2, 1, 1, 1, 1, 2, 6, 10, 0, 0, 11, 56, 27, 2048, 47, 60, 47, 2048, 27, 56, 11, 0
OFFSET
0,8
COMMENTS
The function f is a bijection from the nonnegative integers to the nonnegative rational numbers.
The positive integers, together with (x,y) -> A(x,y), form an abelian group isomorph to the multiplicative group of positive rational numbers (f and g act as isomorphisms).
Each row (or column), except the first, is a permutation of the nonnegative integers.
FORMULA
A(n, k) = A(k, n).
A(n, 0) = 0.
A(n, 1) = n.
A(n, A054429(n)) = 1 for any n > 0.
A(m, A(n, k)) = A(A(m, n), k).
A(n, A(n-1, ... A(2, 1) ... )) = 2^(A002487(n+1)-1).
EXAMPLE
Array A(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12
----+------------------------------------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0
1 | 0 1 2 3 4 5 6 7 8 9 10 11 12
2 | 0 2 8 1 32 14 4 5 128 6 56 17 16
3 | 0 3 1 15 6 7 9 63 2 27 33 31 30
4 | 0 4 32 6 256 2 48 1 2048 60 16 62 384
5 | 0 5 14 7 2 35 1 47 20 3 1022 119 10
6 | 0 6 4 9 48 1 60 3 32 510 12 13 72
7 | 0 7 5 63 1 47 3 511 14 15 61 383 33
8 | 0 8 128 2 2048 20 32 14 32768 4 320 26 512
9 | 0 9 6 27 60 3 510 15 4 93 30 39 258
10 | 0 10 56 33 16 1022 12 61 320 30 196 5 1008
11 | 0 11 17 31 62 119 13 383 26 39 5 575 1
12 | 0 12 16 30 384 10 72 33 512 258 1008 1 960
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Sep 15 2022
STATUS
approved