[go: up one dir, main page]

login
A356941
Number of multiset partitions of integer partitions of n such that all blocks are gapless.
7
1, 1, 3, 6, 13, 24, 49, 88, 166, 297, 534, 932, 1635, 2796, 4782, 8060, 13521, 22438, 37080, 60717, 98979, 160216, 258115, 413382, 659177, 1045636, 1651891, 2597849, 4069708, 6349677, 9871554, 15290322, 23604794, 36318256, 55705321, 85177643, 129865495
OFFSET
0,3
COMMENTS
A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.
FORMULA
G.f.: 1/Product_{k>=1} (1 - x^k)^A034296(k). - Andrew Howroyd, Dec 30 2022
EXAMPLE
The a(1) = 1 through a(4) = 13 multiset partitions:
{{1}} {{2}} {{3}} {{4}}
{{1,1}} {{1,2}} {{2,2}}
{{1},{1}} {{1,1,1}} {{1,1,2}}
{{1},{2}} {{1},{3}}
{{1},{1,1}} {{2},{2}}
{{1},{1},{1}} {{1,1,1,1}}
{{1},{1,2}}
{{2},{1,1}}
{{1},{1,1,1}}
{{1,1},{1,1}}
{{1},{1},{2}}
{{1},{1},{1,1}}
{{1},{1},{1},{1}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nogapQ[m_]:=Or[m=={}, Union[m]==Range[Min[m], Max[m]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], And@@nogapQ/@#&]], {n, 0, 5}]
PROG
(PARI) \\ Here G(n) gives A034296 as vector
G(N) = Vec(sum(n=1, N, x^n/(1-x^n) * prod(k=1, n-1, 1+x^k+O(x*x^(N-n))) ));
seq(n) = {my(u=G(n)); Vec(1/prod(k=1, n-1, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022
CROSSREFS
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A001055 counts factorizations.
A011782 counts multisets covering an initial interval.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Gapless multisets are counted by A034296, ranked by A073491.
Other types: A356233, A356942, A356943, A356944.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356932.
Sequence in context: A225198 A225199 A000219 * A191782 A358905 A027999
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 11 2022
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Dec 30 2022
STATUS
approved