[go: up one dir, main page]

login
A356815
Expansion of e.g.f. exp(-x * (exp(2*x) + 1)).
5
1, -2, 0, 4, 32, 48, -608, -6400, -24064, 163072, 3567104, 28394496, 6535168, -3250745344, -50725740544, -344530853888, 2476610551808, 110057610608640, 1655672654135296, 9616664975114240, -195178079811272704, -6998474114188967936, -110894925369151848448
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{k>=0} (-x)^k / (1 - (2*k-1)*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (2*k-1)^(n-k) * binomial(n,k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(exp(2*x)+1))))
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(2*k-1)*x)^(k+1)))
(PARI) a(n) = sum(k=0, n, (-1)^k*(2*k-1)^(n-k)*binomial(n, k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 29 2022
STATUS
approved