[go: up one dir, main page]

login
A356654
Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k).
0
1, 0, 1, 0, 3, 2, 0, 13, 18, 6, 0, 73, 158, 108, 24, 0, 501, 1510, 1590, 720, 120, 0, 4051, 15962, 23040, 15960, 5400, 720, 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040, 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320
OFFSET
0,5
COMMENTS
The same construction with Stirling1 in place of Stirling2 gives A225479, the ordered Stirling cycle numbers.
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 3, 2;
[3] 0, 13, 18, 6;
[4] 0, 73, 158, 108, 24;
[5] 0, 501, 1510, 1590, 720, 120;
[6] 0, 4051, 15962, 23040, 15960, 5400, 720;
[7] 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040;
[8] 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320;
MAPLE
L := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1) * n! / k!):
T := (n, k) -> k! * add(L(n, j) * Stirling2(j, k), j = k..n):
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := k! * Sum[Binomial[n, j] * FactorialPower[n - 1, n - j] * StirlingS2[j, k], {j, k, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 01 2022 *)
CROSSREFS
Cf. A271703, A048993, A225479, A000262 (column 1), A052838 (column 2), A084358 (row sums).
Sequence in context: A355360 A067346 A360282 * A282423 A111541 A371025
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 01 2022
STATUS
approved