[go: up one dir, main page]

login
A356587
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^x.
1
1, 0, 2, 15, 236, 8490, 459234, 40325880, 4777773104, 767688946920, 156746202491880, 40056474754165320, 12448131138826294152, 4634982982962988690320, 2033625840922821008112144, 1039060311676326627685615800, 611331728108400284878223051520
OFFSET
0,3
FORMULA
a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k! * sigma_{k-1}(k-1)/(k-1) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(k*x)^k)^(1/k))^x))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*sigma(j-1, j-1)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 14 2022
STATUS
approved