[go: up one dir, main page]

login
A356497
a(n) = maximal 2^k such that there exists a (2^k)-th root of unity modulo n.
0
1, 1, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 16, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 2, 16, 4, 2, 4, 2, 4, 4, 8, 2, 2, 2, 4, 2, 2, 4, 2, 4, 16, 4, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 16, 4, 2, 2, 16, 2, 4, 2, 2, 8, 4, 4, 2, 2, 4, 2, 4, 2, 8, 2, 2, 16, 2, 4, 2, 8, 4, 4, 2, 2, 2, 4, 8, 32, 2, 2, 4
OFFSET
1,3
MATHEMATICA
MaxOrdPowTwo[n_] := MaximalBy[Select[Table[{k, MultiplicativeOrder[k, n]}, {k, n}], IntegerQ@Log2@#[[2]] &], Last][[1, 2]];
MaxOrdPowTwoConjectured[n_] := 2^IntegerExponent[CarmichaelLambda[n], 2]; (* conjectured *)
CROSSREFS
Sequence in context: A092188 A340675 A372905 * A097884 A094818 A114233
KEYWORD
nonn
AUTHOR
Dmitry Grekov, Aug 09 2022
STATUS
approved