[go: up one dir, main page]

login
A356083
Matula-Goebel number of the complete ternary tree of n levels.
2
1, 8, 6859, 328951971956791, 1658040970678649782777422161327743110829397625479
OFFSET
1,2
FORMULA
a(n) = prime(a(n-1))^3, for n>=2.
EXAMPLE
For n=3, the complete ternary tree of 3 levels is
6859
/ | \ a(3) = prime(8)^3
8 8 8 = 6859
/|\ /|\ /|\
1 1 1 1 1 1 1 1 1
PROG
(PARI) a(n) = my(ret=1); for(i=2, n, ret=prime(ret)^3); ret;
CROSSREFS
Cf. A007097, A356082 (binary), A356084 (quaternary).
Sequence in context: A281450 A354564 A354567 * A278854 A115442 A216936
KEYWORD
nonn,more
AUTHOR
Kevin Ryde, Jul 27 2022
EXTENSIONS
a(5) from Jinyuan Wang, Jul 27 2022
STATUS
approved