OFFSET
1,1
COMMENTS
Conjecture: all integers >= 2 occur at least once among the sequence of cross-ratios.
FORMULA
a(n) = numerator of ((p_n-p_(n+2))/(p_n-p_(n+3))) * ((p_(n+1)-p_(n+3))/(p_(n+1)-p_(n+2))) where p_n = prime(n) is the n-th prime.
EXAMPLE
Cross-ratio fractions begin 6/5, 3/2, 9/8, 9/5, 9/8, 9/5, 5/4, 10/9, 16/7, 10/9, ...
PROG
(PARI) a(n) = my(p=prime(n), p1=nextprime(p+1), p2=nextprime(p1+1), p3=nextprime(p2+1)); numerator((((p-p2)/(p-p3))*((p1-p3)/(p1-p2)))); \\ Michel Marcus, Jul 29 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Samir Fridhi, Jul 21 2022
STATUS
approved