[go: up one dir, main page]

login
A355207
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(1 - exp(-x)).
3
1, 2, 2, -6, -10, 142, -434, -4478, 88122, -688518, -4032346, 268040678, -5689167298, 53999999466, 1413830543394, -98561802143670, 3282601333608550, -59117973090349066, -1121454296035526786, 171971593399059103618, -10034063428244586340158
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; a(n+1) = 2 * Sum_{k=1..n} (-1)^(n-k) * Stirling2(n,k) * a(k).
PROG
(PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=2*sum(j=1, i, (-1)^(i-j)*stirling(i, j, 2)*v[j])); v;
CROSSREFS
Sequence in context: A153897 A103774 A036052 * A308260 A279212 A299018
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 24 2022
STATUS
approved