[go: up one dir, main page]

login
A355167
a(n) = exp(-1/4) * Sum_{k>=0} (4*k + 3)^n / (4^k * k!).
4
1, 4, 20, 128, 1008, 9280, 96704, 1120768, 14274816, 197833728, 2958521344, 47415508992, 809838505984, 14670950907904, 280760761434112, 5655835404271616, 119561580162646016, 2645030742360588288, 61087848487323959296, 1469652941137655103488, 36758243982057508175872, 954111239026567129595904
OFFSET
0,2
LINKS
Adam Buck, Jennifer Elder, Azia A. Figueroa, Pamela E. Harris, Kimberly Harry, and Anthony Simpson, Flattened Stirling Permutations, arXiv:2306.13034 [math.CO], 2023. See p. 14.
FORMULA
E.g.f.: exp(3*x + (exp(4*x) - 1) / 4).
a(0) = 1; a(n) = 3 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^(k-1) * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * A004213(k).
a(n) ~ 2^(2*n + 3/2) * n^(n + 3/4) * exp(n/LambertW(4*n) - n - 1/4) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^(n + 3/4)). - Vaclav Kotesovec, Jun 27 2022
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[3 x + (Exp[4 x] - 1)/4], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3 a[n - 1] + Sum[Binomial[n - 1, k - 1] 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
Table[Sum[Binomial[n, k] 3^(n - k) 4^k BellB[k, 1/4], {k, 0, n}], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 22 2022
STATUS
approved