[go: up one dir, main page]

login
A354899
a(n) = n! * Sum_{d|n} d^d / (d! * (n/d)!).
2
1, 5, 28, 281, 3126, 48517, 823544, 16995617, 387692650, 10047310481, 285311670612, 8932562801857, 302875106592254, 11119129387084097, 437899615088648176, 18451106376806703617, 827240261886336764178, 39349894934527426209025
OFFSET
1,2
FORMULA
E.g.f.: Sum_{k>0} k^k * (exp(x^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.
MATHEMATICA
a[n_] := n! * DivisorSum[n, #^#/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
PROG
(PARI) a(n) = n!*sumdiv(n, d, d^d/(d!*(n/d)!));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^k*(exp(x^k)-1)/k!)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 11 2022
STATUS
approved