[go: up one dir, main page]

login
A354446
11-gonal numbers (numbers of the form k*(9*k-7)/2), which are products of three distinct primes.
0
30, 506, 606, 715, 1558, 1730, 3945, 5083, 6365, 8558, 9361, 11986, 12455, 14935, 15458, 17081, 19371, 19966, 21183, 25726, 29971, 32215, 32981, 37766, 45551, 46461, 51146, 54065, 57065, 58083, 62245, 68758, 74433, 75595, 76766, 80333, 86458, 88971, 90241
OFFSET
1,1
COMMENTS
A squarefree subsequence of 11-gonal numbers.
EXAMPLE
30 = 3*(9*3 - 7)/2 = 2 * 3 * 5;
506 = 11*(9*11 - 7)/2 = 2 * 11 * 23;
3945 = 30*(9*30 - 7)/2 = 3 * 5 * 263;
80333 = 134*(9*134 - 7)/2 = 11 * 67 * 109.
MAPLE
q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$3]):
select(q, [n*(9*n-7)/2$n=1..200])[]; # Alois P. Heinz, Jun 15 2022
MATHEMATICA
Select[Table[n*(9*n-7)/2, {n, 1, 150}], FactorInteger[#][[;; , 2]]=={1, 1, 1} &] (* Amiram Eldar, Jun 01 2022 *)
CROSSREFS
Intersection of A051682 and A007304.
Sequence in context: A090957 A060560 A118681 * A333648 A020926 A229563
KEYWORD
nonn
AUTHOR
Massimo Kofler, Jun 01 2022
STATUS
approved