[go: up one dir, main page]

login
A353535
a(n) is the cardinality of the set S(n) obtained by the following process: Start with the set S(0) of a single monomial {x}. In step n, the set S(n) is the union of all polynomials obtained by the m*(m+1)/2 sums and the m*(m+1)/2 products formed with the pairs of polynomials in the Cartesian product S(n-1) x S(n-1) with m = card(S(n-1)).
2
1, 2, 6, 38, 1078, 749674
OFFSET
0,2
EXAMPLE
S(0) = {x}, a(0) = 1;
S(1) = {2*x, x^2}, a(1) = 2;
S(2) = {4*x, 2*x^2, 4*x^2, x^2 + 2*x, 2*x^3, x^4}, a(2) = 6;
S(3) = {8*x, 4*x^2, 6*x^2, 8*x^2, 16*x^2, 3*x^2 + 2*x, 5*x^2 + 2*x, 2*x^2 + 4*x, 4*x^2 + 4*x, x^2 + 6*x, 4*x^3, 8*x^3, 16*x^3, 2*x^3 + 2*x^2, 2*x^3 + 4*x^2, 4*x^3 + 8*x^2, 2*x^3 + x^2 + 2*x, 2*x^3 + 4*x, 2*x^4, 4*x^4, 8*x^4, 16*x^4, x^4 + 2*x^3, 2*x^4 + 4*x^3, 4*x^4 + 8*x^3, x^4 + 2*x^2, x^4 + 4*x^2, x^4 + 4*x^3 + 4*x^2, x^4 + x^2 + 2*x, x^4 + 4*x, 4*x^5, 8*x^5, 2*x^5 + 4*x^4, 2*x^6, 4*x^6, x^6 + 2*x^5, 2*x^7, x^8}, a(3) = 38, with 3 collapsing products 4*x^5, 4*x^6, 8*x^4 and 1 collapsing sum 2*x^2 + 4*x. m=6, 2*(7*6/2) - 3 - 1 = 38.
a(4) = 1078 is formed by 611 distinct polynomials from the sums and 487 distinct polynomials from the products. There are 20 polynomials in the intersection of the sum set and the product set: {32*x^3, 16*x^4, 24*x^4, 32*x^4, 12*x^4 + 8*x^3, 20*x^4 + 8*x^3, 8*x^4 + 16*x^3, 16*x^4 + 16*x^3, 4*x^4 + 24*x^3, 16*x^5, 8*x^5 + 8*x^4, 8*x^5 + 16*x^4, 8*x^5 + 4*x^4 + 8*x^3, 8*x^5 + 16*x^3, 8*x^6, 4*x^6 + 8*x^5, 4*x^6 + 8*x^4, 4*x^6 + 16*x^4, 4*x^6 + 4*x^4 + 8*x^3, 4*x^6 + 16*x^3}, thus 611 + 487 - 20 = 1078.
PROG
(PARI) lista(nn) = {my(v = ['z]); print1(#v, ", "); for (n=1, nn, v = setunion(setbinop((x, y)->(x+y), v), setbinop((x, y)->(x*y), v)); print1(#v, ", "); ); } \\ after Michel Marcus in A352969
lista(5)
CROSSREFS
Sequence in context: A006536 A057297 A005530 * A072191 A118324 A060421
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Apr 22 2022
STATUS
approved