[go: up one dir, main page]

login
A353442
Integers m such that the decimal expansion of 1/m contains the digit 6.
7
6, 13, 15, 16, 17, 19, 21, 23, 24, 26, 29, 31, 34, 38, 39, 46, 47, 49, 51, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 68, 69, 71, 73, 76, 79, 81, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 102, 103, 104, 106, 107, 109, 113, 114, 115, 116, 118, 119, 121, 122, 124, 126
OFFSET
1,1
COMMENTS
If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.
EXAMPLE
m = 6 is a term since 1/6 = 0.16666666666...
m = 13 is a term since 1/13 = 0.076923076923...
m = 103125 is a term since 1/103125 = 0.00000969696...
MATHEMATICA
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 150, MemberQ[f@#, 6] &]
CROSSREFS
A351472 (largest digit=6) and A352160 (smallest digit=6) are subsequences.
Similar with digit k: A352154 (k=0), A353437 (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), A353441 (k=5), this sequence (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9).
Sequence in context: A031113 A112610 A100205 * A140888 A053753 A228380
KEYWORD
nonn,base
AUTHOR
STATUS
approved