[go: up one dir, main page]

login
A352886
Number of B-periodic numbers of bit pseudo-length n.
0
1, 0, 4, 0, 7, 3, 16, 0, 37, 0, 64, 18, 127, 0, 283, 0, 517, 66, 1024, 0, 2167, 15, 4096, 255, 8197, 0, 16906, 0, 32767, 1026, 65536, 78, 133087, 0, 262144, 4098, 524407, 0, 1056730, 0, 2097157, 16635, 4194304, 0, 8421247, 63, 16777711, 65538, 33554437, 0
OFFSET
4,3
COMMENTS
For the definition of "B-periodic numbers" and "bit pseudo-length", see Dobeš, Kureš, 2010, p. 294. The first few terms are given in the table on p. 295.
The sequence counts periodic binary numbers of length n where the least-significant bit is 0 (see Dobeš, Kureš, 2010, p. 294).
LINKS
J. Dobeš and M. Kureš, Search for Wieferich Primes through the use of Periodic Binary Strings, Serdica Journal of Computing, Vol. 4, No. 3 (2010), 293-300.
FORMULA
a(n) = (2^n - c(n) - 2)/2, where c(n) = Sum_{d|n} A008683(d)*2^(n/d).
EXAMPLE
For n = 6: The B-periodic numbers of bit pseudo-length 6 are 101010, 100100, 010010 and 110110, so a(6) = 4.
PROG
(PARI) c(n) = sumdiv(n, d, moebius(d)*2^(n/d))
a(n) = (2^n - c(n) - 2)/2
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Felix Fröhlich, Apr 07 2022
STATUS
approved